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INTRODUCTION
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Machine Learning / Deep Learning
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Deep Learning Model
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Loss Function
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How to train a model?
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update w by adding w to 
the derivative of J over w

minimize the difference between 
the predicted and truth output 



Which one is the panda image?
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“panda” 
57.7% confidence

“gibbon” 
99.3% confidence



Adversarial Machine Learning
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Adversarial machine learning is a machine 
learning technique that attempts to fool 
models by supplying deceptive input.

Two goals:
• Targeted attacks aim to find a sample close to a given seed that is misclassified, 

but do not have a specific target output class.
• Untargeted attacks deliberately change the seed sample’s classification from the 

original class A to a chosen class B.



Attacking methods
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Adversary Knowledge
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know everything about 
the targeted model

only know the output 
of the targeted model



ADVERSARIAL ATTACKS
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Fast Gradient Sign Method Attack (FGSM)
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derivative of J over xincrease the loss by changing x

[1] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. 2014. “Explaining and Harnessing Adversarial Examples.” 
arXiv [stat.ML]. arXiv. http://arxiv.org/abs/1412.6572.



FGSM Samples
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Targeted FGSM Attack
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decrease the loss to the targeted label by changing x



Adversarial Patch Attack
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pertubations in a restricted region/segment 
of the benign sample can also fool DL models

[2] Sharif, Mahmood, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. 2016. “Accessorize to a Crime: Real and 
Stealthy Attacks on State-of-the-Art Face Recognition.” In Proceedings of the 2016 ACM SIGSAC Conference on 
Computer and Communications Security, 1528–40. CCS ’16. 



Adversarial Patch Attack with Eyeglasses
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Adversarial Patch Attack with Clothing
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[3] Wu, Zuxuan, Ser-Nam Lim, Larry Davis, and Tom Goldstein. 2019. “Making an Invisibility Cloak: Real World 
Adversarial Attacks on Object Detectors.” arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1910.14667.

http://arxiv.org/abs/1910.14667


ADVERSARIAL DEFENSES
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Adversarial Training
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where c from 0 to 1 to balance the normal loss and the loss for adversarial samples

normal loss loss of adversarial sample

generate adversarial samples and 
train the model with the benign and adversarial samples

[1] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. 2014. “Explaining and Harnessing Adversarial Examples.” 
arXiv [stat.ML]. arXiv. http://arxiv.org/abs/1412.6572.



Randomization (Random Input Transformation)

Tu Hoang 21

[4] Xie, Cihang, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. 2017. “Mitigating Adversarial 
Effects Through Randomization.” arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1711.01991.



Denoising (Conventional Input Rectification)

Tu Hoang 22

squeezer1: bit reduction
squeezer2: image blurring

detect adversarial inputs

[5] Xu, Weilin, David Evans, and Yanjun Qi. 2017. “Feature Squeezing: Detecting Adversarial 
Examples in Deep Neural Networks.” arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1704.01155.



ADVERSARIAL MACHINE LEARNING IN NON-
IMAGE DOMAINS
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Audio
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[6] Carlini, N., and D. Wagner. 2018. “Audio Adversarial Examples: Targeted Attacks on Speech-to-Text.” In 
2018 IEEE Security and Privacy Workshops (SPW), 1–7.



Audio Distortion
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minimize the dB between benign and adversarial samples

generated text is t

adversarial samples are not too much 
different from its benign version



Text
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[7] Samanta, Suranjana, and Sameep Mehta. 2017. “Towards Crafting Text Adversarial Samples.” arXiv
[cs.LG]. arXiv. http://arxiv.org/abs/1707.02812.



Graph
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[8] Zügner, Daniel, Amir Akbarnejad, and Stephan Günnemann. 2018. “Adversarial Attacks on Neural Networks for 
Graph Data.” In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 
2847–56. KDD ’18. New York, NY, USA: Association for Computing Machinery.



Conclusion

❖Adversarial Machine Learning is a trending topic in not only 
academia but also industry.

❖Research directions:

– Present adversarial attacks/defenses in new data types.

– Design stronger attacks to evaluate the robustness of the existing 
systems.

– Develop adversarial defenses in real-life scenarios.
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