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What is a knowledge graph?
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Knowledge Graph Sample1

Search engine

Product Knowledge Graph

Drug Discovery

Others

1. https://thetechbrook.com/inside-the-black-box-of-ai/



Knowledge Graph Representation
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2. https://en.wikipedia.org/wiki/Knowledge_graph_embedding

Knowledge Graph Embedding2

Embedding types:
- Translation
- Semantic Matching
- Matching with Neural Network



Translation Models

5

TransE[1] TransR[3]TransH[2]

[1] Antoine Bordes et al.: Translating Embeddings for Modeling Multi-relational Data. NIPS 2013: 2787-2795
[2] Zhen Wang et al.: Knowledge Graph Embedding by Translating on Hyperplanes. AAAI 2014: 1112-1119
[3] Yankai Lin et al. : Learning Entity and Relation Embeddings for Knowledge Graph Completion. AAAI 2015: 2181-2187

Each edge in a KG is a triplet (h, r, t), where h is the head, r is the relation, and t is the tail.
Example: (Tu, lives_in, Varese)



Semantic Matching Models
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Rescal[4] DistMult[5]

[4] Maximilian Nickel et al.: A Three-Way Model for Collective Learning on Multi-Relational Data. ICML 2011: 809-816
[5] Bishan Yang et al.: Embedding Entities and Relations for Learning and Inference in Knowledge Bases. ICLR (Poster) 2015
[6] Maximilian Nickel, Lorenzo Rosasco, Tomaso A. Poggio: Holographic Embeddings of Knowledge Graphs. AAAI 2016: 1955-1961

HolE[6]



Matching with Neural Networks
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SME[7] NTN[8] MLP[9]

[7] Xavier Glorot et al.: A Semantic Matching Energy Function for Learning with Multi-relational Data. ICLR (Workshop Poster) 2013
[8] Richard Socher et al.: Reasoning With Neural Tensor Networks for Knowledge Base Completion. NIPS 2013: 926-934
[9] Quan Liu et al. : Probabilistic Reasoning via Deep Learning: Neural Association Models. CoRR abs/1603.07704 (2016)



Relational Graph Convolution Network [10]

8[10] Michael Sejr Schlichtkrull et al.: Modeling Relational Data with Graph Convolutional Networks. ESWC 2018: 593-607



Federated Learning
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SME[7]

Federated Learning Workflow3

3. https://medium.com/@vaikkunthmugunthan/a-laymans-introduction-to-privacy-preserving-federated-learning-8ca0e6c73ad4 



FedE [11]

10[11] Mingyang Chen et al.: FedE: Embedding Knowledge Graphs in Federated Setting. IJCKG 2021: 80-88

1. Initialization: find all entities, 
initialize embeddings

2. Training: train/update client’s 
models and aggregate global one

3. Model Fusion: combine local and 
federated learning model



Differential Privacy (DP)

114. https://kc2853.medium.com/side-notes-on-differential-privacy-43ad18809972

DP Simplified Definition4



DP Compositions
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F1: e=1, F3: e=2, 
F_combined: do F1 two times 
(estimated to have e=2)

DP Compositions[12]

[12] Tianqing Zhu et al.: Differential Privacy and Applications. Advances in Information Security 69, Springer 2017, ISBN 978-3-319-62002-2, pp. 1-222
[13] Near, J.P. and Abuah, C.: Programming Differential Privacy. https://programming-dp.com/book.pdf.

Estimated and Actual Distribution[13]

The flexibility of DP:
1. Combine different DP-
mechanisms to create a more 
complicated one,
2. Estimate the privacy budget 
of the combined mechanisms,
3. Monitor the estimated 
privacy budget to stop when it 
is too high.



Differential Privacy for Machine Learning
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l1 l2 l3 l4

probability

train predict

DP-SGD PATE, PATE-GAN

training data machine learning model output



DP-SGD[14]
1. Add noise to the gradient

2. Use the noisy gradient to update 
the models

14[14] Martín Abadi et al.: Deep Learning with Differential Privacy. CCS 2016: 308-318

Sensitivity:
1. Clip the gradients with parameter b
2. The sensitivity is b

Noise Estimation:
1. In one epoch, the privacy budget is e.
2. In all epochs, the privacy budget is e * n_epochs.

Noises depending on:
1/ n_epochs
2/ b
3/ e



Impact of privacy budgets on models' quality [13]
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Decreasing e increases privacy protection but decreases the models' quality



PATE [15]

16[15] Nicolas Papernot et al.: Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data. ICLR 2017

- Aggregation satisfies DP
- Add less noise than DP-SGD



Generative Adversarial Network (GAN) [16]
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[16] Ian J. Goodfellow et al.: Generative adversarial nets. In <i>Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 
2. 2014. MIT Press, Cambridge, MA, USA, 2672–2680.



PATE-GAN[17]

18[17] James Jordon, Jinsung Yoon, Mihaela van der Schaar: PATE-GAN: Generating Synthetic Data with Differential Privacy Guarantees. ICLR (Poster) 2019



Federated learning KG Embeddings (FKGE)[18]
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Privacy:
Protecting the existence of entities in KGs 
of all data providers

[18] Hao Peng, Haoran Li, Yangqiu Song, Vincent W. Zheng, Jianxin Li: Differentially Private Federated KnowledgeGraphs Embedding. CIKM2021: 1416-1425



FKGE architecture
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Training Procedure
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Issues:
1. Training time: each node contacts with only one node at a time.
2. Quality: only aggregate with models of one node at a time.



Conclusion
❖Combining various federated learning and differential privacy approaches for 
training KGs' embeddings.

❖Research Directions:
◦ Training time: can we have a more efficient training procedure?

◦ Quality: can we restrict peers from sharing high noisy models?
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Thank you for your attention
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