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Data Publishing Scenarios
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• Re-identify users
• Infer users' sensitive attribute' values
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Anonymization: k-anonymity
Supported data types: relational data, graphs

Disadvantages:
- Lack of the associations between users' attributes 

and relationships.
- Limited supported data types.



Anonymization of Knowledge Graphs (KGs)
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Advantage: can replace state-of-the-art anonymization principles 
for graphs (relationships) and relational data (attributes).

Our previous principles:
- k-Attribute Degree[1]
- kw-Time Varying Attribute Degree[2]

user:0 user:2
follows

21

age

55

age

Student

job

Engineer

job

user:3

job

19

user:1

40

agejob age
age

age

age

age

follows

2-anonymous KG

For every user, there are at least k-1 other users having the same 
attribute values and relationship out-/in-degrees to those of his/hers.

raw KG

[1] Anh-Tu Hoang, Barbara Carminati, Elena Ferrari: Cluster-Based Anonymization of Knowledge Graphs. ACNS (2) 2020: 104-123
[2] Anh-Tu Hoang, Barbara Carminati, Elena Ferrari: Privacy-Preserving Sequential Publishing of Knowledge Graphs. ICDE 2021: 2021-2026



Sequential Publishing of Knowledge Graphs
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new users: Gavin
deleted users: Lydia

new users: Bob
deleted users: Deniz
re-inserted users: Lydia
updated users: Ken

G1 G2 G3



Threat Model
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Anonymized versions satisfying 3-Attribute Degree

Adversary Knowledge Extracted from the versions: 
- the sequence of attribute values and relationship degrees
- the sequence of signatures

Target user u1:
- u1 is re-identified in G2 since his/her sequence of attribute values 
and relationship degrees is unique.
- u1's sensitive value in G1 is inferred as flu.

G'2G'1 G'3

I1(u1)=I1(u3)=I1(u5)
I1(u2)=I1(u4)=I1(u6)

I2(u1)=I2(u3)=I2(u7)
I2(u4)=I2(u5)=I2(u6)

I3(u1)=I3(u3)=I3(u4)
I3(u2)=I3(u7)=I3(u8)

I(u1)=<I1(u1), I2(u1), I3(u1)>
- I1(u1)={(job,Student),(job,Engineer),(age,21), (follow-out-degree, 1), 
(follow-in-degree, 1)}
- I2(u1)={(job,Student),(job,Engineer),(age,21), (age, 19), (follow-out-
degree, 1)}
- I3(u1)={(job,Student),(job,Engineer),(age,21),(age(30)}

Sig1(u1)={flu}, Sig2(u1)={flu, bron.}, Sig3(u1)={flu,dysp}



(k,l)-Sequence Attribute Degree ((k,l)-sad)
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❖Let gt be a sequence of published anonymized KGs at time t. gt satisfies (k,l)-sad 
if and only if for every user u in gt:
◦ There exists a set of users C(u) whose the sequence of attribute values and degrees in gt are 

identical to those of u.

◦ Signatures of u are identical in all KGs in gt.

The Sequence of Anonymized KGs satisfying (k,l)-sad.

G''2G''1 G''3



Anonymization Algorithm
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raw KG at 
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anonymized KG 
at time t

clusters

clustering algorithm 
(k-medoids, HDBSCAN)

ADS-Table
(storing the sequence of attribute values and 
relationship degrees in published KGs of all users)

Flexibility:
- Data providers can use any clustering algorithms
- Protect only identities or both identities and sensitive attribute values
High-quality anonymized KGs

parameters: k, l, max_dist

- generate clusters
- modify to make clusters valid

A cluster c is valid if:
1/ |c| >= k
2/ all users in c have the same sequence of attribute values and degrees in previous 
anonymized KGs
3/ signatures of c's users share at least l distinct values
4/ the signatures are identical to those of them in previous anonymized KGs



Clusters Generation
❖Gather users having the same sequence of anonymized data in previous 
anonymized KGs.
◦ A cluster of new users

◦ Clusters of existed users whose anonymized are published in previous anonymized KGs.

❖For each cluster, use one of three modification strategy: New Users 
Handling, Deleted Users Handling, Updated/Re-Inserted Users Handling.

❖New Users Handling: modifies the cluster of new users.

❖Deleted Users Handling: removes users from clusters of existed users.

❖Updated/Re-Inserted Users Handling: splits clusters to improve quality.
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Clusters Generation (1)
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Go - user indexes: u1(Ken), u2(Lydia), u3(Ahmed), u4(Simon), u5(Frank), u6(Deniz)
- cluster of new users: {u1, u2, u3, u4, u5, u6}

New users handling:
- split the cluster with provided clustering algorithm: {u1, u2}, {u5}, {u3,u4,u6}
- detect invalid clusters: {u1,u2}, {u5}
- modify invalid clusters: 
+ add a fake user fu1: {u1,u2,fu1}
+ add u5 to valid cluster: {u3,u4,u6,u5}

- return clusters: {u1, u2,fu1}, {u3,u4,u6,u5}

k=3,l=2

Info Users

(𝐼郢0
0) {u1, u2, u3, u4, u5, u6}

ADS-Table H0



Clusters Generation (2)
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G1 - user indexes: u1(Ken), u2(Lydia), u3(Ahmed), u4(Simon), u5(Frank), u6(Deniz), u7(Gavin)
- deleted user: u2
- cluster of new users: {u7}
- clusters of existed users: {u1, u2, fu1}, {u3,u4,u6,u5}

New Users Handling:
- do not add fake users to {u7} since adding fake users (at least 2 users) 
generates lower quality data than removing the cluster (removing 1 user)

Deleted Users Handling:
- delete users removed by data providers: {u1, fu1}, {u3,u4,u6,u5}
- remove invalid cluster: {u1, fu1}

Updated/Re-Inserted Users Handling:
- split big clusters such that their signatures are unchanged.

Return Clusters: {u3,u4,u6,u5}

k=3,l=2

Info Users

(I1) {u1, u2, fu1}

(I2) {u3, u4, u5, u6}

() {u7}

ADS-Table H1



Clusters Generation (3)
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G2 - user indexes: u1(Ken), u2(Lydia), u3(Ahmed), u4(Simon), u5(Frank), u6(Deniz), u7(Gavin), u8(Bob)
- deleted user: u4,u5
- cluster of new users: {u7, u8}
- re-inserted user: u2
- clusters of existed users: {u1, u2, fu1}, {u3,u4,u6,u5}

New Users Handling:
- add a fake user fu2: {u7,u8,fu2}

Deleted Users Handling:
- remove users removed by data providers: {u3,u6}
- remove invalid cluster: {u3,u6}

Updated/Re-Inserted Users Handling:
- split big clusters such that their signatures are unchanged.

Return Clusters: {u7,u8,fu2}, {u3,u4,u6,u5}

k=3,l=2

Info Users

(I1, ∅) {u1, u2, fu1}

(I2, I2') {u3, u4, u5, u6}

() {u7, u8}

ADS-Table H2



Knowledge Graph Generalization
❖Add and remove fake edges to ensure that the attribute values and 
relationship degrees of users in the same clusters are identical.
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{u1, u2,fu1}, {u3,u4,u6,u5}



Evaluation
❖Four real-life datasets: Email-Eu-core, Email-temp, Yago, Freebase

❖Metrics:
◦ Attribute Degree Information Loss of Remaining Users (RADM): calculates the information 

loss of users in anonymized KGs.

◦ Overral Attribute Degree Information Loss Metric (ADM): calculates RADM and considers the 
information loss of removed users as 1.

❖Experiments:
◦ Evaluate the impact of parameters

◦ Evaluate the impact of monitor published KGs

◦ Comparative Evaluation
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Impact of clustering algorithms
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Email-temp

- Merge_split: uses three strategies to split clusters
- Invalid_removal: removes invalid clustersSpliting clusters improve the quality of anonymized KGs.

k-Medoids are better than HDBSCAN in anonymizing KGs.



Impact of k, l
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Email-Temp

K has higher impact than l on the information loss of anonymized KGs
- Increasing k increases the information loss
- Increasing l does not always increase the information loss



Impact of monitor published KGs
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The more monitored KGs, the higher the information loss is.
However, data providers can decide to decrease the information loss by resetting the 
monitored KGs.



Comparative Evaluation
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Email-Temp Freebase

Generate higher quality anonymized KGs than previous work on 
anonymizing a single snapshop.



Conclusion
❖(k,l)-Sequence Attribute Degree: a new principle for protecting users' privacy in 
KGs
◦ Can use for not only KGs but also relational data, graphs.

◦ Flexible on deciding the privacy protection: linking attack, attribute attack.

❖Anonymization Algorithm:
◦ Minimize the information loss.

◦ Handle most popular data updates: insert, delete, update, re-insert users.

❖Future work
◦ Decentralized models for anonymizing KGs
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Thank you for your attention
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